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Abstract

In Burger et al. (2002) [12] and Goldfeld et al. (2004) [17] it was conjectured that if H is a simple Lie
group of real rank at least 2, then the number of conjugacy classes of (arithmetic) lattices in H of covolume
at most x is x(γ (H)+o(1)) logx/ log logx where γ (H) is an explicit constant computable from the (absolute)
root system of H . In this paper we prove that this conjecture is false. In fact, we show that the growth is
at rate xc logx . A crucial ingredient of the proof is the existence of towers of field extensions with bounded
root discriminant which follows from the seminal work of Golod and Shafarevich on class field towers.
© 2012 Elsevier Inc. All rights reserved.
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1. Introduction

Let H be a non-compact simple Lie group endowed with a fixed Haar measure μ, K a maxi-
mal compact subgroup of H and X = H/K the associated symmetric space. A classical theorem
of Wang [38] asserts that if H is not locally isomorphic to SL2(R) or SL2(C), then for every
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0 < x ∈ R there exist only finitely many Riemannian orbifolds covered by X with volume at
most x. Consequently, if LH (x) (resp. TFLH (x), ALH (x)) denotes the number of conjugacy
classes of lattices (resp. torsion-free lattices, arithmetic lattices) in H of covolume at most x,
then LH (x) is finite for every x. For ALH (x) this is also true even for H = SL2(R) or SL2(C)

by a result of Borel [8].
In recent years there has been a growing interest in the asymptotic behavior of these functions

(cf. [12,15–17,1,3]). Super-exponential upper bounds were given in many cases, and at least for
rank one groups SO(n,1) these bounds are optimal.

The current paper is devoted to the study of LH (x) for groups H with real rank at least 2.
Here one expects a slower rate of growth: Recall that in this case, by Margulis’s arithmeticity
theorem (see [25]), every lattice Γ in H is arithmetic, i.e. there exists a number field k with
ring of integers O and the set of archimedean valuations V∞, an absolutely simple, simply con-
nected k-group G and an epimorphism φ : G = ∏

v∈V∞ G(kv) → H , such that Ker(φ) is compact
and φ(G(O)) is commensurable with Γ . Thus for groups H of real rank at least 2, we have
LH (x) = ALH (x). Moreover, Serre conjectured [35] that for all lattices Γ in such H , Γ has the
congruence subgroup property (CSP), i.e. Ker(Ĝ(O) → G(Ô)) is finite in the notations above.
Assuming the conjecture, the question of counting lattices in H boils down to counting arith-
metic groups and their congruence subgroups. A related conjecture which is also relevant for us
is Margulis–Platonov (MP) conjecture (cf. [31]). It says that all normal subgroups of G(k) are
of standard form coming from the nonarchimedean valuations of k with respect to which G(kv)

is anisotropic (in particular, G(k) does not have any noncentral proper normal subgroups if G is
kv-isotropic for all v).

The conjecture of Serre is proved by now for all non-uniform lattices and for “most” of the uni-
form ones, excluding certain cases when H is of type An, D4 or E6, and the same is also true for
MP (see [28, Chapter 9] and [31] for the details and precise statements). Moreover, very precise
estimates for the number of congruence subgroups in a given lattice are obtained in [22,18,23],
some of these are conditional on the validity of the generalized Riemann hypothesis (GRH, cf.
[39]). These results led to a conjecture in [12] that for groups H of R-rank � 2, LH (x) grows
like xc logx/ log logx . In fact, a more precise conjecture is made in [17], where it is suggested that

lim
x→∞

log LH (x)

(logx)2/ log logx
= γ (H), with γ (H) = (

√
h(h + 2) − h)2

4h2
, (1)

where h is the Coxeter number of the (absolute) root system corresponding to H (i.e. the root
system of the split form of H ).

In this paper we prove that the conjecture is false! The correct rate of growth is xlogx . It is
still possible to show that the conjecture is essentially true if one restricts to non-uniform lattices
for which we refer to [5].

Theorem 1. Let H be a simple Lie group of real rank at least 2. Then:

(i) There exists a positive constant a such that LH (x) � xa logx for all sufficiently large x.
(ii) Assuming the CSP and MP, there exists a positive constant b such that LH (x) � xb logx for

all sufficiently large x.

A crucial ingredient in the proof of part (i) of the theorem is the existence of infinite class
field towers of totally real fields as established by Golod and Shafarevich [19]. In Section 3, we
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elaborate on it using the theory of Pisot numbers to get also sequences of fields of arbitrarily
large degree but with a fixed number of complex places and a bounded root discriminant. Using
these fields we construct a sequence of arithmetic lattices in H with covolume going to infinity
and with a particularly large number of subgroups of small index. See below for details. It is
interesting to mention that arithmetic lattices with fields of definition of growing degrees also
come out in a connection with the Lehmer conjecture — see [2].

Our argument gives explicit estimates for the constants a and b in Theorem 1 but falls short
from answering the following:

Problem 1. Does limx→∞ log LH (x)

(logx)2 exist? And if so, what is its value?

The proof of the theorem uses methods developed in [1,18,23] (see also [17]). We would like
to point out that unlike some of the results in [18] and [23], Theorem 1 does not depend on the
GRH.

As all this suggests, our work is actually about counting arithmetic lattices and their congru-
ence subgroups. It is therefore not surprising that it eventually boils down to various number
theoretic problems. The wealth and diversity of number theoretic ingredients involved in proving
Theorem 1 and results of [5] is exciting and may suggest some topics for future study.

Before describing the method of proof, let us put our main result in a more general perspective.
In [12] the rate of growth of TFLH (x) was determined for H = SO(n,1), n � 4; it is super-
exponential. The lower bound there is already obtained by considering a suitable fixed lattice
in SO(n,1) and its finite index subgroups. The upper bound is proved by geometric methods.
These geometric methods were extended in [15] and [16] to more general semisimple groups.
In [3] a very precise super-exponential estimate for ALH (x) is given for H = SL2(R). There
again the full rate of growth is already obtained by considering the finite index subgroups of a
single lattice. Moreover, in [18] and [23] (see also [17]) precise asymptotic estimates were given
for the growth rate of the number of congruence subgroups in a fixed lattice Λ in H . (Some of
the results there are conditional on the GRH.) The rate of growth turns out to depend only on H

and not on Λ. All this suggested that the rate of growth of the finite index subgroups within one
lattice is the main contribution to LH (x). This led to the conjecture mentioned above. Moreover,
in [1] it is shown that the growth rate of the maximal arithmetic lattices in H is very small. This
provided more evidence in favor of the conjecture. Recently A. Salehi Golsefidy [34] showed
that indeed in simple Lie groups over local fields of positive characteristic, the total growth of
lattices is of the same growth type as the subgroup growth of a single lattice.

In [5] we will show that the conjecture is essentially true for non-uniform lattices but The-
orem 1 here shows, somewhat surprisingly, that it is not true in general. In fact, we discover
here a new phenomenon: the main contribution to the growth of uniform lattices in H does not
come from subgroups of a single lattice. As it will be explained below, it comes from a “diagonal
counting” when we run through different arithmetic groups Γi defined over number fields ki of
different degrees di , and for each Γi we count some of its subgroups. The difference between the
uniform and non-uniform cases relies on the fact that all non-uniform lattices in H are defined
over number fields of a bounded degree over Q. On the other hand, uniform lattices may come
from number fields ki of arbitrarily large degrees, i.e., di → ∞.

We now briefly sketch the main argument. If Γ is an arithmetic lattice obtained as φ(G(O))

defined above, then there is an explicit formula [29] for its covolume in H . The analysis of this
formula and also the growth of the low-index congruence subgroups of φ(G(O)) shows that
we can expect fast subgroup growth if we consider groups over fields of growing degree with
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relatively slow growing discriminant Dk . More precisely, we can combine these two entities
together into the so-called root discriminant rdk = D1/deg k

k and then look for a sequence of
number fields ki with degrees growing to infinity but with bounded rdki

. In a seminal work
Golod and Shafarevich [19] came up with a construction of infinite class field towers. It is such a
tower of number fields ki that we use to define our arithmetic subgroups Γi . Galois cohomology
methods show the existence of suitable ki -algebraic groups Gi which give rise to arithmetic
lattices Γi = Gi (Oi ) in H whose covolume is bounded exponentially in di = degki . We then
present cd2

i congruence subgroups of Γi whose covolume is still bounded exponentially in di .
Using the theory of Bruhat–Tits buildings in Section 5 we show that sufficiently many of such
congruence subgroups are not conjugate to each other in H . This will complete the proof of the
lower bound of Theorem 1, at least for most real simple Lie groups H . The remaining cases
require further consideration: for example, if H is a complex Lie group, the fields ki should be
replaced by suitable extensions obtained via the help of the theory of Pisot numbers. These fields
do not form a class field tower any more but still have bounded root discriminant.

The proof of the upper bound presents a new type of difficulty: this time we need to obtain
a uniform upper bound on growth which does not depend on the degrees of the defining fields.
(This is what makes the growth rate xlogx instead of xlogx/ log logx .) A key ingredient of the proof
is an important theorem of Babai, Cameron and Pálfy (see Theorem 7.7) which bounds the size
of permutation groups with restricted Jordan–Holder components. This theorem was previously
used in [22] to study the subgroup growth of lattices defined over global fields of positive char-
acteristic. Bringing related technique to the number field case presents certain challenges and
requires developing some new “subgroup growth” methods. We refer to Section 7 for the details
of the argument.

The paper is organized as follows. After introducing some notations and conventions in
Section 2, we supply in Section 3 the needed number theoretic background: we quote the Golod–
Shafarevich work and use it with the theory of Pisot numbers to get families of number fields
with bounded root discriminant and a given number of complex embeddings. In Section 4 we
analyze carefully Prasad’s formula for the covolume of arithmetic lattices. In Section 5 we tackle
the subtle difference between counting covers of a given manifold M (which is what we get by
counting finite index subgroups of π1(M)) and counting manifolds covering M — which is what
is relevant in the current paper. This issue often occurs in geometric considerations, for example,
in constructions of manifolds which are isospectral but not isometric. We develop the required
technique only up to the point needed in the current paper and leave some questions for further
research. The theory of Bruhat–Tits building and their combinatorial growth plays a major role
here. In Section 6 we prove the lower bound of Theorem 1 using the results in Sections 3, 4
and 5, while in Section 7 we prove the upper bound. Finally, in Section 8 we extend the theorem
to semisimple Lie groups.

2. Notations and conventions

Let H be a semisimple Lie group without compact factors. Its subgroup Γ is called a lattice
if Γ is discrete in H and its covolume (with respect to some and hence any Haar measure on H )
is finite. A lattice is called irreducible if Γ N is dense in H , for every non-compact, closed,
normal subgroup N of H . A lattice is called uniform (resp. non-uniform) if H/Γ is compact
(resp. non-compact).
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Two groups Γ1 and Γ2 are called commensurable if Γ1 ∩ Γ2 is of finite index in both of them.
If Γ is a lattice in H , its commensurability subgroup (or commensurator) in H is defined as

CommH (Γ ) = {
g ∈ H

∣∣ g−1Γ g and Γ are commensurable
}
.

For a group (resp. profinite group) G we define its rank rk(G) as the supremum of the minimal
number of generators over the finitely generated subgroups (resp. open subgroups) of G. If G is
a finite group, its p-rank is defined by rkp(G) = rk(P ), where p is a prime and P is a Sylow
p-subgroup of G.

Along the lines we shall often come to arithmetic considerations, for which we now fix some
notations. Throughout this paper k will always denote a number field, O = Ok is its ring of
integers and Dk is the absolute value of the discriminant �k . The set of valuations (places)
of k, V = V (k), is the union of the set V∞ of archimedean and the set Vf of nonarchimedean
(finite) places of k. The number of archimedean places of k is denoted by a = ak = #V∞, and
r1, r2 denote the number of real and complex places of k, respectively (so a = r1 + r2 and
d = dk = [k : Q] = r1 + 2r2). Given a nonarchimedean place v ∈ Vf , the completion of k with
respect to v is a nonarchimedean local field kv , its residue field, which will be denoted by Fv

or Fq , is a finite field of cardinality q = qv . Finally, A = A(k) = ∏′
v∈V kv is the ring of adèles

of k, where
∏′ denotes a restricted product.

All logarithms in this paper will be taken to base 2. For a real number x, [x] denotes the
largest integer � x. The number of elements of a finite set S will be denoted by #S, while the
order of a finite group G will be denoted by |G|.

Whenever it is not stated otherwise, the constants c1, c2 and etc. depend only on the Lie
group H .

3. Number theoretic background

3.1. Let α1, . . . , αd be a Z-basis of Ok (i.e. an integral basis of k), and let v1, . . . , vd denote
the archimedean embeddings of k. By definition, the discriminant �k = det[vj (αi)]2 and Dk

is its absolute value. The discriminant is related to the volume of the fundamental domain of
the integral lattice in k. As we will see later on, this relation goes further to the covolumes of
arithmetic lattices in semisimple Lie groups. We will also use a notion of root discriminant of k

which is defined by rdk = D1/d
k , where d = [k :Q].

Let us recall the following well-known results.

Theorem 3.1 (Minkowski). (See [21, Theorem 4, p. 119].) Let k be a number field of degree
d = r1 + 2r2. There exists a nonzero α ∈ Ok whose norm satisfies

∣∣N(α)
∣∣ �

(
4

π

)r2 d!
dd

√
Dk.

The proof of this theorem follows from the existence of lattice points in convex bodies in Rd

whose volume is big enough relative to a fundamental region for the lattice.
By Stirling’s formula, d! = √

2πd(d
e
)deθ/12d with 0 < θ < 1 (see [21, p. 122]). This, together

with the fact that |N(α)| � 1 for 0 	= α ∈ Ok , allows us to deduce that Dk > (π
4 )2r2 1

2πd
e2d−(1/6d).

We shall often use the following form of this estimate:
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Corollary 3.2. (See [21, Theorem 5, p. 121].) There exists an absolute constant C > 0 such that
for any k 	= Q, d � C logDk .

3.2. Let us call a sequence of pairwise non-isomorphic fields (ki)i∈N asymptotically bounded
if there exists a constant c0 such that for every i, the root discriminant rdki

� c0. The definition
implies that the degree of the fields in an asymptotically bounded sequence goes to infinity (it
can be deduced from Minkowski’s theorem that the number of fields with bounded Dk is finite,
hence the number of fields with bounded root discriminant and bounded degree is also finite).
The existence of asymptotically bounded sequences is not obvious, it follows from the work of
Golod and Shafarevich on the class field towers.

Theorem 3.3. (See Golod and Shafarevich [19].) There exists an infinite tower of unramified
extensions of a totally real number field k.

Given an unramified extension l/k, we have Dl = D[l:k]
k (by [21, Proposition 8, p. 62 and

Proposition 14, p. 66]), and thus rdl = rdk . Therefore the root discriminant is constant along
a tower of unramified extensions, which implies that such towers are asymptotically bounded.
A well-known explicit sequence of totally real fields which satisfy Golod–Shafarevich cri-
terion was constructed by Martinet in [26], the degrees of the fields are powers of 2 and
c0 = rdki

= 1058.565 . . . . A question about the smallest possible value of c0 is important for
various applications and is still open. It is known that a smaller constant can be achieved if we do
not require the extensions to be unramified. The best current result in this direction is obtained
by Hajir and Maire in [20], it provides an asymptotically bounded sequence of totally real fields
with c0 = 954.3 . . . .

3.3. Our next goal is to construct asymptotically bounded sequences of fields which have a
fixed nonzero number of complex places. Note that the results mentioned above do not apply to
this case, as in an unramified tower the number of complex places is either zero or grows with
the degree (the same applies also to tamely ramified towers in [20]). In order to deal with this
problem we use some results about Pisot numbers.

Assume that the field k has at least one real place. The number θ ∈ k is called a Pisot number
(or Pisot–Vijayaraghavan number) if for a real place v1 : k → R we have v1(θ) > 1 and for all
other vj ∈ V∞, |vj (θ)| < 1.

Lemma 3.4. Let k be a totally real number field of degree d .

(a) There exists a Pisot number θ ∈ k such that θ has degree d and |N(1 − θ)| < Dδ
k for some

absolute constant δ.
(b) Moreover, for any t such that 1 � t � d there exist t different Pisot numbers θ1, . . . , θt sat-

isfying the conditions of part (a) and such that α = (1 − θ1) . . . (1 − θt ) is negative at t

archimedean places of k and positive at the remaining d − t places.

Proof. (a) It is well known that there exist Pisot numbers θ ∈ k which generate k over Q (see
e.g. [6, Theorem 5.2.2, p. 85]), thus it remains to show that we can choose such θ that the
upper bound for the norm of 1 − θ holds. In order to do so we need to recall the proof of the
existence of θ : The argument uses Minkowski’s theorem and implies that we can choose θ such
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that 1 < v1(θ) � 2d−1√Dk and |vj (θ)| � 1/2 for vj ∈ V∞ � {v1} (see [6] for the details). Now
if P(x) is the minimal polynomial of θ , then |N(1 − θ)| = |P(1)|. We have

∣∣P(1)
∣∣ = ∣∣(1 − v1(θ)

) · · · · · (1 − vd(θ)
)∣∣ �

(
2d−1

√
Dk + 1

)(3

2

)d−1

= 3d−1
√
Dk +

(
3

2

)d−1

.

By Corollary 3.2, the degree d is bounded by C logDk , hence we obtain |N(1 − θ)| � Dδ
k where

δ depends only on C.
(b) Using part (a) we can find t different Pisot numbers θ1, . . . , θt ∈ k such that vi(θi) > 1,

|vj (θi)| < 1 for j 	= i and |N(1 − θi)| < Dδ
k (1 � i � t , vj are the infinite places of k). It follows

that α = (1 − θ1) . . . (1 − θt ) satisfies the conditions at the infinite places. �
Corollary 3.5. Given t ∈ N, there exists an asymptotically bounded sequence of fields (li)i∈N
such that r2(li) = t for all i.

Proof. We start with an infinite unramified tower (ki) of totally real fields with rdki
� c0 pro-

vided by Theorem 3.3. As the degrees di → ∞, we can assume that di � t for all i. Let k = ki be
one of the fields. Let θ1, . . . , θt ∈ k be Pisot numbers chosen as in part (b) of the lemma and let
α = (1 − θ1) . . . (1 − θt ). Then the field l = k[√α ] has precisely t complex places and we have
the following bound for its discriminant:

Dl � D2
k22d

∣∣N(α)
∣∣ �D2

k22dDtδ
k ;

rdl � 2D
2+tδ

2d

k � 2c
2+tδ

2
0

(here the first inequality follows from [21, Proposition 8, p. 62], [21, Proposition 14, p. 66]
and some elementary properties of the norm). Repeating this procedure for all ki we obtain an
asymptotically bounded sequence of fields with the required properties. �

From Minkowski’s theorem it follows that there exists a positive lower bound for the con-
stants c0 of asymptotically bounded sequences of fields. Although we do not require it in this
paper, it would be interesting to know more about this bound and its dependence on the number
of complex places of the fields in the sequences.

4. Arithmetic subgroups and their covolumes

4.1. Let H be a semisimple connected linear Lie group without compact factors. It is known
that if H contains irreducible lattices then all of its almost simple factors are of the same type.
Such groups H are called isotypic or typewise homogeneous (see [25, Chapter 9.4]). So from now
on we shall assume that H is isotypic. Moreover, without loss of generality we can further assume
that the center of H is trivial. This implies that H is isomorphic to AdH , where Ad denotes as
usual the adjoint representation. The group AdH is the connected component of identity of the
R-points of a semisimple algebraic R-group. There exist, therefore, absolutely simple R-groups
Gi , all of the same type, such that H = (

∏a
i=1 Gi (R) × Ga+1(C)b)o. A classical theorem of

Borel [7] (see also [9]) asserts that such H does contain irreducible lattices.
Let now G be an algebraic group defined over a number field k which admits an epimorphism

φ : G(k ⊗Q R)o → H whose kernel is compact. In this case, φ(G(O)) is an irreducible lattice
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in H . Such lattices and the subgroups of H which are commensurable with them are called
arithmetic. It can be shown that to define all arithmetic subgroups of H it is sufficient to consider
only simply connected, absolutely almost simple k-groups G which have the same (absolute)
type as the almost simple factors of H and are defined over the fields with at most b complex and
at least a real places. In this case, as G is a simply connected k-group, G(k ⊗Q R) is connected.
We shall call such groups G and corresponding fields k admissible.

The local-global principle provides a standard way to construct arithmetic subgroups which
will be particularly useful for us. Let P = (Pv)v∈Vf

be a collection of parahoric subgroups
Pv ⊂ G(kv) of a simply connected k-group G. The family P is called coherent if

∏
v∈V∞ G(kv) ·∏

v∈Vf
Pv is an open subgroup of the adèle group G(Ak). Now let

Λ = Λ(P) = G(k) ∩
∏

v∈Vf

Pv,

where P is a coherent collection. Following [29], we shall call Λ the principal arithmetic sub-
group associated to P. We shall also call Λ′ = φ(Λ) a principal arithmetic subgroup of H .

4.2. The Lie group H carries a Haar measure μ which is uniquely defined up to a constant
factor. The choice of a particular normalization of μ is not essential for our considerations.
From now on we shall fix a Haar measure on G(k ⊗Q R) for some admissible G/k following
[29, Sections 1.4, 3.6], this also defines a normalized Haar measure on H which does not depend
on the choice of G. We can compute the covolumes of principal arithmetic subgroups with respect
to μ using Prasad’s volume formula. By [29, Theorem 3.7], we have:

μ
(
H/Λ′) = Ddim(G)/2

k

(
Dl/D[l:k]

k

) 1
2 s

(
r∏

i=1

mi !
(2π)mi+1

)[k:Q]
τk(G)E(P),

where

(i) dim(G), r and mi denote the dimension, rank and Lie exponents of G;
(ii) l is a Galois extension of k defined as in [29, 0.2] (if G is not a k-form of type 6D4, then l is

the split field of the quasi-split inner k-form of G, and if G is of type 6D4, then l is a fixed
cubic extension of k contained in the corresponding split field; in all the cases [l : k] � 3);

(iii) s = s(G) is an integer defined in [29, 0.4], in particular, s = 0 if G is an inner form of a split
group and s � 5 if G is an outer form;

(iv) τk(G) is the Tamagawa number of G over k (since G is simply connected and k is a number
field, τk(G) = 1); and

(v) E(P) = ∏
v∈Vf

ev is an Euler product of the local factors ev = e(Pv).

The local factors ev can be effectively computed using the Bruhat–Tits theory. In order to
justify this claim we will need a few more definitions.

4.3. Let kv be a nonarchimedean local field of characteristic zero (a finite extension of the
p-adic field Qp), and let G be an absolutely almost simple, simply connected kv-group. The
Bruhat–Tits theory [11] associates to G/kv a simplicial complex B = B(G/kv) on which G(kv)
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acts by simplicial automorphisms. The complex B is called the affine building of G/kv . A para-
horic subgroup P of G(kv) is defined as a stabilizer of a simplex of B. Every parahoric subgroup
is compact and open in G(kv) in the p-adic topology. Maximal parahoric subgroups are the max-
imal compact subgroups of G(kv); they are characterized by the property of being the stabilizers
of the vertices of B. A maximal parahoric subgroup is called special if it fixes a special vertex
of B. A vertex x ∈ B is special if the affine Weyl group W of G(kv) is a semidirect product of
the translation subgroup by the isotropy group Wx of x in W . In this case, Wx is canonically
isomorphic to the (finite) Weyl group of the kv-root system of G. If G is quasi-split over kv

and splits over an unramified extension of kv , then G(kv) contains also hyperspecial parahoric
subgroups (see [37, 1.10]); these subgroups are parahoric subgroups of G(kv) of the maximal
volume [37, 3.8.2].

Every special (or hyperspecial) parahoric subgroup Pv has a normal pro-p subgroup the quo-
tient by which is a quasi-simple group (i.e. it is simple modulo the center), and hence it also
has a maximal prosolvable normal subgroup with a finite simple (non-abelian) quotient. Such a
maximal normal subgroup is unique.

Following [29], we associate to a parahoric subgroup Pv ⊂ G(kv) two reductive groups Mv

and Mv over the residue field Fv of kv : Using the Bruhat–Tits theory one can define a smooth
affine group scheme Gv over the ring of integers Ov of kv , whose generic fiber (= Gv ×Ov

kv) is
isomorphic to G(kv) and whose group of integral points is isomorphic to Pv . Then Mv denotes a
maximal connected reductive Fv-subgroup of Gv ×Ov

Fv . The group Mv is defined in a similar
way for the quasi-split inner form G of G(kv) and a specially chosen parahoric subgroup of G.
We refer to [29, 2.2] for the details and finally write down the expression for the local factor ev

in the volume formula:

ev = e(Pv) = #F(dim(Mv)+dim(Mv))/2
v

#Mv(Fv)
.

Assume now that G is quasi-split over kv and Pv is a special parahoric subgroup, which is,
moreover, assumed to be hyperspecial if G splits over an unramified extension of kv . In this case,
Mv is isomorphic to Mv and Mv(Fv) is a finite simple group of the same type as G. So the
computation of e(Pv) becomes easy (see [29, Remark 3.11] and Section 6 below). We recall that
these conditions on G and Pv are indeed satisfied for almost all nonarchimedean places of k: G is
quasi-split over almost every kv and

∏
v∈V∞ G(kv) · ∏v∈Vf

Pv being open in G(Ak) implies that
Pv is hyperspecial for almost every v. Thus generically the computation of the local factors in
the volume formula is pretty straightforward.

4.4. Let Γ be a maximal arithmetic lattice in H . It is known that Γ can be obtained as
a normalizer in H of the image Λ′ of some principal arithmetic subgroup Λ of G(k) (see
[10, Proposition 1.4(iv)]). Moreover, such Λ’s are principal arithmetic subgroups of maximal
type in a sense of Rohlfs (see [33] and also [13] for precise definitions). In order to prove the
main theorem we will need certain control over the structure of Λ and the index [Γ : Λ′] in
terms of the covolume of Γ . For this purpose we recall two results which follow from [1].

Let Γ = NH (Λ′) (Λ′ = φ(Λ), Λ = G(k) ∩ ∏
v∈Vf

Pv) be a maximal arithmetic lattice of
covolume less than x, with x large enough.
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Proposition 4.1. Let T be the smallest set of nonarchimedean places of k such that for every v ∈
Vf �T , G is quasi-split over kv , splits over an unramified extension of kv , and Pv is hyperspecial.
Then there exists a constant C1 = C1(H) such that

∏
v∈T qv � xC1 .

Proof. This result follows from [1, Sections 4.1, 4.3, 4.4] but is not stated there explicitly. We
recall the main steps of the proof.

Let T1 be the subset of the nonarchimedean places of k such that G is not quasi-split over kv

for v ∈ T1, let R ⊂ Vf be the set of places for which G is quasi-split but is not split over an
unramified extension of kv , and let T2 ⊂ Vf � (T1 ∪ R) be the set of places for which Pv is not
hyperspecial. Then T = T1 ∪ R ∪ T2 is a finite subset of Vf . Moreover,

μ(H/Γ ) � c1

∏
v∈T1

qδ1
v , by [1, 4.3];

μ(H/Γ ) � c2
(
Dl/D[l:k]

k

)δ2 � c2

∏
v∈R

qδ2
v , by [1, 4.1], see also [1, 4.3];

μ(H/Γ ) � c3

∏
v∈T2

qδ3
v , by [1, 4.4],

where c1, c2, c3 > 0 are some absolute constants and δ1, δ2, δ3 > 0 are constants which depend
only on the Lie type of H .

Altogether, these inequalities imply that there exist c > 0 and δ = δ(H) > 0 such that x �
μ(H/Γ ) � c

∏
v∈T qδ

v , and the proposition follows. �
Proposition 4.2. (See [1, Corollary 6.1].) There exists a constant C2 = C2(H) such that for
Q = Γ/Λ′ we have |Q| � xC2 .

4.5. For future use let us give a variant of the “level versus index” lemma where the
level is controlled by the covolume of the lattice. To put it in a perspective, recall the clas-
sical lemma asserting that in � = SL2(Z), every congruence subgroup of index n contains
�(m) = Ker(SL2(Z) → SL2(Z/mZ)) for some m � n, i.e. the level m is at most the index n.
This was generalized in [22] to the congruence subgroups of an arbitrary arithmetic group � by
paying a price for m; i.e. it was shown that m � Cn for some constant C which depends on the
arithmetic group �. Here we want to bound C in terms of the covolume.

Let us first introduce some notations. As before, let Λ = G(k)∩∏
v∈Vf

Pv where k is a number
field with the ring of integers O, G is a k-form of H and Pv is a parahoric subgroup of G(kv),
and let Gv be an Ov-scheme with the generic fiber isomorphic to G(kv) such that Gv(Ov) = Pv .
This induces a congruence subgroup structure on Pv defined as follows:

Pv(r) = Ker
(
Gv(Ov) → Gv

(
Ov/π

r
vOv

))
,

where πv is a uniformizer of Ov . These congruence subgroups induce a congruence structure on
Λ, Λ(πr) = Pv(r)∩Λ. More generally, for every ideal I of O look at its closure I in Ô = ∏

Ov .
v v
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Then I is equal to
∏l

i=1 π
ei
vi
Ô for some Y = {v1, . . . , vl} ⊂ Vf and e1, . . . , el ∈N. We then define

the I -congruence subgroup of Λ,

Λ(I) = Λ ∩
(

l∏
i=1

Pvi
(ei) ·

∏
v /∈Y

Pv

)
.

In particular, for every m ∈ N, the m-congruence subgroup Λ(m) = Λ(mO) is defined. Any
subgroup of Λ which contains Λ(I) for some nonzero ideal I is called a congruence subgroup.

Let now Λ be a principal arithmetic subgroup of a maximal type in G(k) and let Λ′ be its
image in H . Assume also that μ(H/Λ′) � x, where x 
 0.

Lemma 4.3. If Λ1 is a congruence subgroup of Λ of index n, then Λ1 ⊇ Λ(mO) where m ∈ N
with m � xCn and C is a constant which depends only on H .

Proof. A similar result is proved in [24, Proposition 6.1.2] but the proposition there provides
only m � C0n for some constant C0 depending on Λ. In fact, the proof of the proposition gives
C0 = 1 if certain conditions (i)–(iv) are satisfied for all primes. The role of C0 is to compensate
for the bad primes. Now, if Λ is a principal arithmetic subgroup of a maximal type as described
above, then the conditions (i)–(iv) are satisfied for all the primes v ∈ Vf � T , where T is the set
from Proposition 4.1. We need to compensate for the primes v ∈ T . For each one of them, we
can start the induction argument in the proof of Proposition 6.1.2 [24] from the first congruence
subgroup so, by Proposition 4.1, we can replace C0 by xC for some constant C depending only
on H . �
Remark 4.4. Note that the index of mO in O (and hence also of Λ(mO) in Λ) is not necessarily
polynomial in m, but rather it is bounded by md where d is the degree of the defining field k of
the arithmetic subgroup Λ. As d is bounded by O(logx), the index of Λ(mO) in Λ is bounded
by (xn)c logx . A better result is probably true: Λ1 ⊇ Λ(I) for some I �O such that [Λ : Λ(I)] �
(xn)c with a constant c depending only on H . This indeed follows from Lemma 4.3 if the degree
of the field k is bounded.

5. Counting covers versus counting manifolds

The results of this paper rely heavily on “subgroup growth” [24] but there is a crucial dif-
ference: If M is a finite volume manifold covered by a symmetric space X = H/K (H is a
semisimple Lie group and K is a maximal compact subgroup of H ) with Γ = π1(M), then there
is a one-to-one correspondence between the n-sheeted covers of M and the Γ -conjugacy classes
of index n subgroups of Γ . Thus, if an(Γ ) denotes the number of subgroups of Γ of index n and
bn(M) — the number of n-sheeted covers of M , then

bn(M) � an(Γ ) � nbn(M).

Thus, counting subgroups and counting covers are essentially the same, up to a linear factor.
On the other hand, in this paper we count manifolds, so two covers of M are identified if they
are isomorphic as manifolds even if they are not isomorphic as covers. In group theoretic terms
it means that we are counting Iso(X)-conjugacy classes of lattices, where Iso(X) is the group
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of isometries of X. Now, H is of finite index in Iso(X) and so, up to a constant factor, we are
counting H -conjugacy classes of lattices in H .

Ideally, what we would like to have is:

Conjecture 5.1. There exists a constant c = c(H), such that if Γ is a lattice in H and Γ1 is
a subgroup of Γ of covolume at most x in H , then the number of subgroups of Γ which are
H -conjugate to Γ1 is bounded by xc if x is large enough.

We do not know if this conjecture is true or just a wishful thinking. In this section we shall
establish a weaker version which will suffice for our applications.

Observe first that if Γ1 and Γ2 are index n subgroups of a lattice Γ in H , then Γ1\H/K

is isometric to Γ2\H/K if and only if there exists h ∈ Iso(X) which conjugates Γ1 to Γ2, i.e.
Γ1 and Γ2 are conjugate in Iso(X). For counting purposes (up to a constant factor) we can
assume h ∈ H . Such an h conjugating Γ1 to Γ2 is an element of the commensurability group
CommH (Γ ) = {h ∈ H | [Γ : Γ ∩ h−1Γ h] < ∞}. Recall that if Γ is non-arithmetic irreducible
lattice in H , then [CommH (Γ ) : Γ ] < ∞ by a well-known result of Margulis [25, Theorem 1,
p. 2]. This implies that counting covers of a non-arithmetic manifold M is, up to a constant
factor (depending on M , though), the same as counting manifolds covering M . This is the reason
why in [12] the lower bound on the number of hyperbolic manifolds was presented using covers
of non-arithmetic manifolds. A similar remark applies in a different context to [4]. But, in this
paper, when we deal with the higher rank H , all lattices are arithmetic and so we must consider
the delicate issue of the difference between isomorphism classes of covers and isomorphisms of
manifolds.

Let G be an absolutely simple, simply connected algebraic group defined over a number field k

and let us fix a k-embedding G ⊂ GLs for some s. Let Z denote the center of G and π : G →
G := G/Z be the natural projection defined over k. If Γ is commensurable to G(O) = G(k) ∩
GLs(O) (O is the ring of integers of k), then π(Γ ) ⊂ G(k), CommG(Γ ) = CommG(G(O)) and
π(CommG(Γ )) is also in G(k) (see e.g. [25, Lemma VII.6.2]).

For every v ∈ Vf , let Pv be a maximal parahoric subgroup of G(kv) such that P = (Pv)v∈Vf

is a coherent collection. By the Bruhat–Tits theory (see Section 4.3), for every v there ex-
ists a smooth affine group scheme Gv defined over Ov , the ring of integers of kv , such that
Gv(Ov) = Pv and Gv(kv) is kv-isomorphic to G(kv). Let Ko

v be the normal pro-p subgroup
of Pv , Ko

v = Ker(Gv(Ov) → Gv(Fqv )) where Fqv = Ov/mv is the residue field of Ov w.r.t. the
maximal ideal mv .

Recall that when G(kv) = Gv(kv) acts on the Bruhat–Tits building Bv associated with it,
Pv is the stabilizer of some vertex wv ∈ Bv and Ko

v is the set of elements of G(kv) which fixes
pointwise the link of wv . This link is isomorphic to the projective building of the finite group
Gv(Fqv ), in particular, this implies that the number of vertices of the link is at most #Gv(Fqv ) �
q

dim(G)
v .

Let Λ be the principal arithmetic subgroup of G(k) associated with P = (Pv)v∈Vf
as in Sec-

tion 4.1, i.e. Λ = G(k)∩∏
v∈Vf

Pv . Let I ⊂ Vf be a fixed finite subset of nonarchimedean places
of k. It defines an ideal of O which we denote by the same letter. The group Λ is embedded diag-
onally in

∏
v∈I G(kv). Let Λ(I) = Λ ∩ ∏

v∈I Ko
v , the I -congruence subgroup of Λ. It is a finite

index normal subgroup of Λ and the index is bounded by
∏

q
dim(G)
v .
v∈I
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Denote by Λ the image π(Λ) of Λ in G(k). The group G(k) acts on G(k) by the adjoint
action. Let

N
(
Λ(I),Λ

) = {
g ∈ G(k)

∣∣ g
(
Λ(I)

) ⊆ Λ
}
.

This is not a subgroup but rather a union of finitely many cosets of Λ including Λ itself. We call
the number of these cosets the index of Λ in N(Λ(I),Λ) and denote it by [N(Λ(I),Λ) : Λ].

Proposition 5.2. Let Λ be a principal arithmetic subgroup associated with P = (Pv)v∈Vf
, such

that Pv is a maximal parahoric subgroup for every v. If μ(H/Λ′) � x, then for every ideal I as
above,

[
N

(
Λ(I),Λ

) : Λ ]
� xC

(∏
v∈I

qv

)dim(G)

,

where C = C(H) is a constant.

Proof. Denote

P =
∏

v∈Vf

Pv ⊂
∏′

v∈Vf

G(kv) and K =
∏
v∈I

Ko
v ×

∏
v∈Vf �I

Pv.

Then, by the strong approximation theorem [28, Theorem 7.12, p. 427], Λ (resp. Λ(I)) is dense
in P (resp. K) and P ∩ G(k) = Λ (resp. K ∩ G(k) = Λ(I)), when G(k) is embedded diagonally
in

∏′
v∈Vf

G(kv).
Let now

N(K,P) = {
g ∈ G(Af )

∣∣ g(K) ⊆ P
}
.

It is easy to see that N(K,P) ⊇ N(Λ(I),Λ) ⊇ Λ. Indeed, if g ∈ N(Λ(I),Λ), then it is in
N(K,P) by the density of Λ (resp. Λ(I)) in P (resp. K) and the continuity of the action. The
second inclusion is obvious. This implies[

N
(
Λ(I),Λ

) : Λ ]
�

[
N(K,P) : P] · [N(Λ,Λ) : Λ ]

,

where P = N(P,P) = ∏
v∈Vf

Pv , Pv is the stabilizer of Pv in G(kv), and P ∩ G(k) = N(Λ,Λ).

Now, by Proposition 4.2, [N(Λ,Λ) : Λ] � xC .
If v ∈ Vf � I , then the projections of K and P to G(kv) are both Pv , so if g ∈ N(P,K), its

v-component is in the stabilizer Pv of Pv . For v ∈ I , let us denote N(Ko
v ,Pv) = {g ∈ G(kv) |

g(Ko
v ) ⊆ Pv} and let [N(Ko

v ,Pv) : Pv] denote the number of Pv-cosets in N(Ko
v ,Pv). Clearly,

N(K,P) is contained in
∏

v∈I N(Ko
v ,Pv) × ∏

v∈Vf �I N(Pv,Pv), which implies

[
N(K,P) : P ] =

∏
v∈I

[
N

(
Ko

v ,Pv

) : Pv

] ·
∏

v∈Vf �I

[
N(Pv,Pv) : Pv

] =
∏
v∈I

[
N

(
Ko

v ,Pv

) : Pv

]
.

We shall show that [N(Ko,Pv) : Pv] � q
dim(G)
v which will finish the proof.
v
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The subgroup Pv , being a maximal parahoric subgroup of G(kv), is the stabilizer of a ver-
tex wv of Bv and Ko

v is the subgroup of G(kv) which fixes pointwise all the vertices w ∈ Bv

of distance at most 1 from wv , and the fixed point set of Ko
v is exactly this set. Thus if

g ∈ N(Ko
v ,Pv), then the fixed point set of g(Ko

v ) includes wv , which is equivalent to g(wv)

being fixed by Ko
v , i.e., g(wv) is of distance � 1 from wv . As it was pointed out above, the link

of a vertex of the Bruhat–Tits building of G(kv) has order at most q
dim(G)
v . The number of cosets

of Pv in N(Ko
v ,Pv) is, therefore, also bounded by q

dim(G)
v and the proposition is now proven. �

Corollary 5.3. If Λ1 is a subgroup of index n in Λ containing Λ(I), then the number of sub-
groups of Λ which are conjugate to Λ1 within G(k) is bounded by nxC(

∏
v∈I qv)

dim(G).

Proof. The number of Λ-conjugates of Λ1 is at most n. Now, if g ∈ G(k) and g(Λ1) = Λ2 ⊆
Λ, then g(Λ(I)) ⊆ Λ, and so g ∈ N(Λ(I),Λ). The latter contains at most xC(

∏
v∈I qv)

dim(G)

cosets of Λ by the proposition, therefore the total number of possibilities for Λ2 is bounded by
nxC(

∏
v∈I qv)

dim(G). �
6. Proof of the lower bound

Our strategy will be the following: By using an asymptotically bounded sequence of fields ki

of degree di over Q, we shall construct principal arithmetic subgroups Λi in H of covolume

bounded by c
di

1 for some constant c1. We then present in each Λi , c
d2
i

2 subgroups of index at

most c
di

3 (where c1, c2, c3 are constants > 1). We further show that “generically” these subgroups
are not conjugate to each other. We therefore can deduce that asymptotically H has at least

c
d2
i

2 non-conjugate lattices of covolume at most (c1c3)
di . This will prove the lower bound in

Theorem 1 with a = log c2/(log c1c3)
2.

If H is a real simple Lie group, let (ki) be a totally real infinite class field tower as in The-
orem 3.3, and if H is complex let (ki) be an asymptotically bounded sequence provided by
Corollary 3.5 with t = r2(ki) = 1. In both cases di = dki

→ ∞ and rdi = D1/di

ki
� c0, for an

absolute constant c0.
Let k = ki be one of the fields and d = dk . In order to construct arithmetic lattices in H which

are defined over k and have certain properties we appeal to results of [9] and [30].
Let H̃ be the simply connected cover of H and let H̃cpt be its compact real form. Recall that

the real groups of types Bn, Cn, E7, E8, F4 and G2 are inner, while types An, Dn and E6 admit
both inner and outer real forms. Moreover, compact groups of types An (n > 1), D2n+1 and E6
are outer (cf. [36]). We define an extension l of the field k as follows:

(i) If H̃ is either complex or it is real and inner and if H̃cpt is inner, let l = k;
(ii) If H̃ is either complex or it is real and outer and if H̃cpt is outer, let l be a quadratic extension

of k such that the real places of k do not split in l;
(iii) If H̃ is real outer and H̃cpt is inner, let l be a quadratic extension of k such that v1 ∈ V∞(k)

does not split in l while all the rest real v split;
(iv) If H̃ is real inner and H̃cpt is outer, let l be a quadratic extension of k such that v1 ∈ V∞(k)

splits in l while all the rest real v do not split in l.

(We say that a real place v of k splits in a quadratic extension l if there exist two extensions of v

to l.)
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Note that we can always choose l so that Dl/k � c′
0
d with some absolute constant c′

0: In case (i)
it is clear. In case (ii) we can take l = k[i] for which c′

0 = 4 (as only primes of k which lie over 2
may possibly ramify in k[i]). In case (iii), let l = k[√1 − θ ], and in case (iv), l = k[√θ − 1],
where θ is a Pisot number in k provided by Lemma 3.4(a). To show that in the last two cases
Dl/k � c′

0
d we can apply the same argument as in Corollary 3.5.

Let p0 be a fixed rational prime and let v0 be a fixed place of k above p0.

Proposition 6.1. There exists an absolutely simple simply connected k-group G such that

(1) G(k ⊗QR) admits an epimorphism to H whose kernel is compact (i.e. G is admissible in the
sense of Section 4.1);

(2) G is quasi-split over kv for every v ∈ Vf � {v0};
(3) The quasi-split inner form of G splits over l.

Proof. Let G0 be an absolutely simple, simply connected, quasi-split k-group of the same
absolute type as H which splits over l and does not split over k if k 	= l. Similarly to
[30, Propositions 4, 5] it follows from [30, Theorem 1(i)] that there exists an inner twist G of G0
over k which satisfies (1) and (2). Property (3) is satisfied automatically by the definition of G0,
which is the quasi-split inner form of G. �

Let P = (Pv)v∈Vf
be a coherent collection of parahoric subgroups of G such that for every

v 	= v0, Pv is special and it is hyperspecial whenever l is unramified over k at v. Let Λ = G(k) ∩∏
v∈Vf

Pv be the corresponding principal arithmetic subgroup of G(k). By the definition of G,

the projection Λ′ = φ(Λ) (induced by φ : G(k ⊗Q R) → H ) is an arithmetic lattice in H . We
shall now use Prasad’s formula (see Section 4.2) to compute its covolume:

μ
(
H/Λ′) = Ddim(G)/2

k

(
Dl/D[l:k]

k

) 1
2 s

(
r∏

i=1

mi !
(2π)mi+1

)[k:Q]
τk(G)E(P).

By the construction, the field l in the volume formula is the extension of k defined above, so
we have

Dk � cd
0 , Dl/D[l:k]

k = Dl/k � c′
0
d
.

Since G is a simply connected group over a number field k, the Tamagawa number τk(G) = 1. It
remains to analyze the Euler product

E(P) =
∏

v∈Vf

q
(dim(Mv)+dim(Mv))/2
v

#Mv(Fv)
.

For v 	= v0, G(kv) is quasi-split and Pv is special, so Mv is isomorphic to Mv over Fv and
Mv(Fv) is a finite simple group of the same type as G. Indeed, since Pv is a maximal parahoric
subgroup, the radical of Mv is trivial, so Mv(Fv) is a finite semisimple group whose diagram
can be obtained by deleting the vertex corresponding to Pv and all the adjacent edges from the
extended Dynkin diagram of G(kv). It remains to recall the definition of the special parahoric
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subgroups to see that Mv(Fv) is a simple group of the same type as G. So the order of Mv(Fv) is
known (see e.g. [27]):

#Mv(Fv) = qdim(Mv)
v

r∏
i=1

(
1 ± q−(mi+1)

v

)
(except for the groups of type D4 whose splitting field is of degree 3 over Fv , but these groups
do not arise in our setting). The sign ± in the formula depends on the splitting type of Mv(Fv).

In all the cases we obtain (for v 	= v0):

#Mv(Fv) � qdim(Mv)
v

r∏
i=1

(
1 − q−(mi+1)

v

)
.

Also, as Mv is isomorphic to Mv over Fv , we have dim(Mv)+dim(Mv)
2 = dim(Mv).

We now can bound the covolume of Λ′:

μ
(
H/Λ′) � c

d·dim(G)/2
0 c′

0
d· 1

2 s

(
r∏

i=1

mi !
(2π)mi+1

)d

λv0

∏
v∈Vf

1

(1 − q
−(m1+1)
v ) . . . (1 − q

−(mr+1)
v )

,

λv0 = (1 − q
−(m1+1)
v0 ) . . . (1 − q

−(mr+1)
v0 )q

(dim(Mv0 )+dim(Mv0 ))/2
v0

#Mv0(Fv0)
.

The λv0 -factor corresponds to the distinguished place v0 of k at which we have no control over
the structure of G. Still it is easy to see that

λv0 � q
(dim(Mv0 )+dim(Mv0 ))/2
v0 � qdim(G)

v0
� p

d·dim(G)
0

(here we use the assumption that v0 lies over a fixed prime p0).
Now, the Euler product

∏
v∈Vf

1

(1 − q
−(m1+1)
v ) . . . (1 − q

−(mr+1)
v )

= ζk(m1 + 1) . . . ζk(mr + 1)

� ζ(m1 + 1)d . . . ζ(mr + 1)d � ζ(2)dr =
(

π2

6

)dr

,

where ζk is the Dedekind zeta function of k and ζ is the Riemann zeta function. The inequalities
ζk(s) � ζ(s)d and ζ(s) � ζ(2) (s � 2) which we use here are elementary and easy to check.

We obtain

μ
(
H/Λ′) � cd

1 , where c1 = c
1
2 dim(G)

0 c′
0

1
2 s

r∏
i=1

mi !
(2π)mi+1

p
dim(G)
0

(
π2

6

)r

.
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Remark 6.2. Instead of bounding the Euler product E(P), one can also give its precise expression
(at least up to a rational factor which in our case is λv0 ) as a product of Dedekind zeta functions
and certain Dirichlet L-functions evaluated at mi + 1, i � r . However, in order to determine the
L-factors a case-by-case analysis is needed. Since the bound we get is sufficient for our purpose,
we shall not go into details and skip the case-by-case routine.

Now fix a prime p′ 	= p0 and look at the p′-congruence subgroup Λ(p′) of Λ. The group
Q = Λ/Λ(p′) is a quasi-semisimple finite group of order at most p′d dim(G), and it contains an

elementary abelian p′-group A of dimension at least d . This A has at least p′ [ 1
4 d2] subgroups

[24, Proposition 1.5.2], hence Λ has at least p′ [ 1
4 d2] subgroups of index at most cd

3 , where c3 =
p′ dim(G). This gives p′ [ 1

4 d2] lattices in H of covolume at most (c1c3)
d .

We finally claim that any given lattice in this set of p′ [ 1
4 d2] lattices has at most p′ c4d lattices

within the set which are conjugate to it in H . This indeed follows from Corollary 5.3. Thus we

get p′ [ 1
4 d2−c4d] � cd2

2 different conjugacy classes of lattices in H of covolume at most (c1c3)
d as

promised.

7. Proof of the upper bound

Let us recall the main result of [1] which we are going to use in this section (see also [3] for
the groups of type A1):

Theorem 7.1. Let H be a semisimple Lie group of real rank � 2 without compact factors. Denote
by mH (x) the number of conjugacy classes of maximal irreducible lattices in H of covolume at
most x. Then for every ε > 0 there exists c = c(ε,H) such that mH (x) � xc(logx)ε for every
x 
 0.

It is actually conjectured in [1] that mH (x) is polynomially bounded, but we will not need this
conjecture here.

We shall count the lattices of covolume at most x by first counting the maximal ones (the
number of which is small by Theorem 7.1), and then counting finite index subgroups within such
maximal lattices.

In the proof below the following proposition will be used several times.

Proposition 7.2. (See [24, Proposition 1.3.2(i)].) Let G be a group, N �G and Q = G/N . Then

sn(G) � sn(N)sn(Q)nrk(Q),

where sn(X) denotes the number of subgroups of X of index at most n and rk(Q) is the rank
of Q.

It is easy to see that our results are independent of the choice of the Haar measure μ on H . For
the sake of convenience in this section we shall fix μ so that μ(H/Γ ) � 1 for every lattice Γ .
This is possible since by Kazhdan–Margulis theorem (see [32, Chapter XI]) there exists a positive
lower bound for the covolumes of lattices in H .
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We have:

LH (x) � mH (x) · sup
Γ

μ(H/Γ )�x

sx(Γ ), (2)

where Γ runs over the maximal lattices in H .
Every such maximal Γ is equal to NH (Λ′) as in Proposition 4.2, where Λ′ = φ(Λ) in the

notations there.
We can first use Proposition 7.2 to deduce that sx(Γ ) � sx(Λ

′)sx(Q)xrk(Q), where Q = Γ/Λ′.
By Proposition 4.2, |Q| � xc2 hence sx(Q) � |Q|log |Q| � xc2

2 logx and rk(Q) � c2 logx. Thus to
prove the upper bound of Theorem 1 it suffices to give a similar bound for sx(Λ

′). Clearly,
sx(Λ

′) � sx(Λ). So it is sufficient to bound sx(Λ) = sx(Λ̂), where Λ̂ is the profinite completion
of Λ.

To estimate sx(Λ̂) let us recall that we assume Serre’s conjecture, i.e. that Λ satisfies the
congruence subgroup property. It means that the congruence kernel C = Ker(Λ̂ → ∏

v Pv) is
finite. To simplify the exposition we shall assume that C = {e} and later explain how to remove
this assumption.

So we need to bound from above sx(
∏

v Pv). Let T be the set of “bad” valuations from Propo-
sition 4.1. Thus,

∏
v∈T qv � xc1 (see there) and for every v /∈ T , Pv is hyperspecial. Now we

can use Proposition 7.2 again, this time with G = ∏
v Pv , N = ∏

v /∈T Pv and Q = ∏
v∈T Pv , to

deduce

sx(Λ) � sx(N)sx(Q)xrk(Q). (3)

The group Q is a product of #T p-adic analytic compact groups (for possibly different
primes p). Collecting together those with the same p (i.e. those v ∈ T which lie over the same ra-
tional prime p), we get a subgroup Ap such that Ap ⊆ ∏

v|p SLs(Ov), where O is the ring of inte-
gers of k, the field of definition of Λ, and s is a fixed number such that H ⊆ SLs(R). If d = dk and
Mv is the maximal ideal of Ov , then we have pd = ∏

v|p[Ov : Mv]ev = ∏
v|p q

ev
v = ∏

v|p pfvev ,

where qv = pfv and ev denotes the ramification degree. Now, SLs(Ov) is a p-adic analytic vir-
tually pro-p group of dimension � s2fvev . It follows that Kp = Ker(Ap → ∏

v|p SLs(Fqv )) is a

pro-p group of rank at most s2d = O(logx) (by [14, Theorem 5.2 and Theorem 3.8]). We can
bound the rank of Ap/Kp using the following result:

Proposition 7.3. (See [24, Corollary 24, p. 326].)

rk
(
GLs(Fpf )

)
< 2s2f.

Putting all this together, Q is a product
∏

p∈S Ap of finitely many groups Ap , where S

is the set of rational primes lying below T . It has a normal subgroup K = ∏
p∈S Kp with

rkl (K) � s2d = O(logx) for every l. The quotient Q/K is a subgroup of
∏

v∈T SLs(Fqv ) and
by Proposition 7.3,

rk

( ∏
SLs(Fqv )

)
�

∑
rk

(
SLs(Fqv )

)
� 2s2

∑
fv = O(logx).
v∈T v∈T v∈T
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Here the last estimate follows from the fact that
∏

v∈T p
fv
v = ∏

v∈T qv � xc (by Proposition 4.1).
Thus, by definition of the rank, rk(Q/K) = O(logx).

So, we deduce that rk(Q) = O(logx).
We are left by (3) with bounding sx(Q) and sx(N).
Let us consider sx(Q). Recall first:

Proposition 7.4. (See [24, Corollary 1.7.5, p. 28].) Let X be a finite group. Then

sn(X) � nν(n)+r+1,

where r = rk(X) and ν(n) is the number of distinct prime divisors of n (so ν(n) = O(
logn

log logn
) by

the prime number theorem).

We can apply Proposition 7.4 to the profinite group Q to deduce that sx(Q) � xc3 logx as
needed. Before moving to bounding sx(N), let us summarize what we have seen so far as we
will use it again later.

Claim 7.5. With the notations as above, let T0 be a finite set of valuations of k with
∏

v∈T0
qv � xc

and let Q = ∏
v∈T0

Pv . Then rk(Q) = O(logx) and sx(Q) � xO(logx).

Now we can turn to the more challenging task of bounding sx(N). This time N is a product
of infinitely many groups N = ∏

v /∈T Pv . Each group Pv is an extension of a pro-p group Ko
v by

an almost simple group Lo
v = Pv/K

o
v of the form Gv(Fqv ), where Gv is the group scheme over

the ring Ov in kv (see Section 4.3).
Let Ko = ∏

v /∈T Ko
v and Lo = ∏

v /∈T Lo
v , so N/Ko ∼= Lo. Let Kv be the preimage in Pv of the

center of Lo
v and K = ∏

v /∈T Kv .
Following [24, Window 3, §2], we say that a profinite group X is in Bk (for a fixed k ∈ N)

if no composition factor of X is isomorphic to Alt(m) with m > k or to a classical finite simple
group of Lie type of degree exceeding k (here degree means the degree of the natural projective
representation). Our group N , as well as any open subgroup of it, is in Bk for a suitable k

depending only on the Lie group H but not on Λ.
Recall that a chief factor of a group X is a quotient A/B where B ⊂ A are both normal

subgroups of X and B is a proper subgroup of A, maximal with respect to being normal in X.
In this case A/B is isomorphic to Sm for some finite simple group S, and we say that this is
a non-abelian chief factor if S is non-abelian. We will say that X has simple non-abelian chief
factors if for every non-abelian chief factor A/B as above we have m = 1. By Jordan–Holder
theorem, the groups appearing as chief factors are determined by any chosen chief series. Thus if
X has a normal prosolvable subgroup K with X/K isomorphic to a direct product of non-abelian
finite simple groups, one can deduce that X has simple non-abelian chief factors. This is clearly
the case for our group N .

Recall that a subgroup M of X is called subnormal if there exists a sequence X = M0 > M1 >

· · · > Mm = M with Mi+1 � Mi and Mi+1 is a maximal normal subgroup of Mi , in which case
we say that M is a subnormal subgroup of length m in X. The number of non-abelian factors
Mi/Mi+1 will be called the non-abelian length of M in X.

Lemma 7.6. Let X be a profinite group with simple non-abelian chief factors and M a sub-
normal subgroup of X of non-abelian length m0 in X. Let C(M) be the core of M , i.e.
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C(M) = ⋂
g∈X Mg is the largest subgroup of M which is normal in X. Then the non-abelian

length of C(M) in X is equal to m0.

Proof. Clearly, the non-abelian length of C(M) is at least m0. We prove the converse by in-
duction on m (the length of M in X). Assume by the induction hypothesis that the non-abelian
length of C(Mm−1) is m1 and it is at most m′

0, which is the non-abelian length of Mm−1 in X.
If Mm−1/M is abelian, then m0 = m′

0. The group M = Mm ∩C(Mm−1) is a normal subgroup
of C(Mm−1) (since Mm � Mm−1 and C(Mm−1) � Mm−1) and

C(Mm−1)/M ∼= C(Mm−1)Mm/Mm � Mm−1/Mm,

so it is abelian. It follows that C(Mm−1)/C(Mm) is also abelian (since C(Mm) = C(M) and
C(M) is the intersection of the X-conjugates of M in C(Mm−1), where the latter is normal
in X). Thus the non-abelian length of C(M) is also m1 and we are done with this case.

If Mm−1/M is non-abelian, then m0 = m′
0 + 1. In the notations of the previous paragraph we

get that C(Mm−1)/M is isomorphic to a normal subgroup of a simple group S = Mm−1/Mm. If
it is trivial, then C(M) = C(Mm−1) and we finish by induction. If not, then C(Mm−1)/C(Mm)

is a product of copies of S on which X acts transitively. But as every non-abelian chief factor
of X is simple, there is only one such copy and the non-abelian length of C(M) in X is at most
m′

0 + 1 = m0. �
Assume now further that X is in Bk and recall an important result of Babai, Cameron and

Pálfy (cf. [24, Theorem 4, p. 339]):

Theorem 7.7. Let Y be a primitive permutation group of degree n and Y ∈ Bk . Then |Y | � nf1(k),
where f1(k) depends only on k.

We mention in passing that while Theorem 7.7 as stated depends on the classification of the
finite simple groups (CFSG), the way we are going to use it here (for profinite groups with
“known” finite simple factors) is independent of the CFSG.

The important corollary for us is the following:

Proposition 7.8. If X is in Bk and D is a subgroup of X of index n then there exists a subnormal
subgroup M of X contained in D with [X : M] � nf1(k).

Proof. Let X = D0 > D1 > · · · > Dd = D be a sequence of subgroups such that Di+1 is a
maximal subgroup of Di . Define by induction Mi+1 to be the core of Di+1 ∩ Mi in Mi (i.e.
the maximal normal subgroup of Mi contained in Di+1 ∩ Mi ). Note that either Di+1 ∩ Mi =
Mi (in which case Di+1 ⊇ Mi and Mi+1 = Mi ) or Di+1 ∩ Mi is a maximal subgroup of Mi

of index at most [Di : Di+1]. The action of Mi on the coset space Mi/(Di+1 ∩ Mi) is by a
primitive permutation group, which is in Bk by our assumption. Thus, Theorem 7.7 implies that
|Mi/Mi+1| � [Di : Di+1]f1(k), and altogether |X/Md | � [X : D]f1(k). �

Let us now apply all these preparations to the group N = ∏
v /∈T Pv . For this group we have an

extra property:
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Lemma 7.9. Let M be a subnormal subgroup of N with a sequence N = M0 � M1 � · · ·� Mm = M in which Mi/Mi+1 are finite simple groups. Then for every i for which Mi/Mi+1 is
non-abelian, there is a unique v such that Mi ∩ Pv = Pv while Mi+1 ∩ Pv = Kv . Here Kv is the
unique prosolvable subgroup of Pv for which Pv/Kv is a non-abelian finite simple group (such
Kv exists since Pv is hyperspecial).

Proof. First note that Mi ∩ Pv is a subnormal subgroup of Pv and Kv is the unique maximal
normal subgroup of Pv (see Section 4.3). For almost every v, M ⊇ Pv , but for finitely many v

this inclusion may not hold, in which case there is a first i such that Mi ⊇ Pv , so Mi ∩ Pv = Pv ,
but Mi+1 ∩ Pv ⊆ Kv . In this case

Pv/(Mi+1 ∩ Pv) = Mi+1Pv/Mi+1 � Mi/Mi+1,

and so Pv/(Mi+1 ∩ Pv) = Mi/Mi+1.
For a given i, there is only one such v. Indeed, assume Mi ⊇ Pv1 × Pv2 but Mi+1 ∩ Pv1 ⊆ Kv1

and Mi+1 ∩ Pv2 ⊆ Kv2 . Now, Mi+1 ∩ (Pv1 × Pv2) is a normal subgroup of Pv1 × Pv2 ; looking
at it modulo Kv1 × Kv2 we get a normal subgroup of the product Pv1/Kv1 × Pv2/Kv2 of two
non-abelian finite simple groups, which has a trivial intersection with each factor. It is therefore
the trivial subgroup, i.e., Mi+1 ∩ (Pv1 × Pv2) ⊆ Kv1 × Kv2 . So

(Pv1 × Pv2)/
(
Mi+1 ∩ (Pv1 × Pv2)

) ∼= Mi+1(Pv1 × Pv2)/Mi+1.

The right hand side is a subnormal subgroup of Mi/Mi+1 which is a simple group but the left
hand side has a quotient (Pv1 × Pv2)/(Kv1 × Kv2) which is a product of two simple groups —
a contradiction.

Finally, we note that since all the non-abelian composition factors of X are obtained from the
various Pv/Kv , it is clear that for every i there is such a place v. �

Note that if E is a normal subgroup of N , then for every v /∈ T , either E∩Pv ⊇ Pv or E∩Pv ⊆
Kv , in which case Lv = Pv/Kv is one of the non-abelian composition factors appearing in N/E.

Before continuing, let us make an observation which will be needed later.

Corollary 7.10. Let d(N) denote the minimal number of generators of the profinite group N =∏
v /∈T Pv . Then d(N) = O(logx).

Proof. Indeed, Ko is a product of infinitely many p-adic analytic pro-p groups Kp = ∏
v|p Ko

v ,
but for every p, Kp is a subgroup of a uniform pro-p group of dimension bounded by O(logx)

and hence d(Ko) = O(logx). The quotient N/Ko is an infinite product of finite quasi-simple
groups. The multiplicity of each one is bounded by O(logx) and hence d(N/Ko) = O(logx).
Altogether d(N) is also bounded by a constant multiple of logx. �

We are now ready to bound sx(N): If D is a subgroup of index at most x in N , then by
Proposition 7.8 it contains a subnormal subgroup M of N of index at most xc . The non-abelian
composition factors between M and N correspond to a finite set T1 of valuations v /∈ T , and since
qv � |Lv| � q

dim(G)
v , it follows that

∏
v∈T1

qv � xc1 . Let C(M) be the core of M . By Lemma 7.6
it has the same non-abelian finite simple composition factors. Moreover, from the discussion
above it follows that C(M) contains Pv for every v /∈ T ∪ T1.
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Now note that the number of possibilities for T1 is bounded by xc2 (this follows from∏
v∈T1

qv � xc1 and [1, Section 4.1 and Proposition 3.2(ii)]), and so we can fix T1 and reduce the
problem to estimating sx(

∏
v∈T1

Pv). This brings us to the situation which was already consid-
ered in this section. The required estimate is provided by Claim 7.5. This finishes the proof of
the upper bound of Theorem 1 under the assumption that C = Ker(Λ̂ → ∏

Pv) is trivial.
Let us now explain how to handle the case when C is non-trivial. First recall that the CSP

and MP imply that it is always cyclic — a subgroup of μ(k) — the group of roots of unity
in k (cf. [31, Theorem 2]). Recall that if μn is the group of n-roots of unity, then Q[μn]/Q is
an extension of degree φ(n) which is at least

√
n. This implies that μ(k) is of order bounded

by O(d2
k ) = O(log2 x). Thus C is of order O(log2 x). Secondly, note that along the way of

the proof we saw that every subgroup M of N of index at most x contains an infinite prod-
uct N1 = ∏

v /∈T1
Pv , where T1 satisfies

∏
v∈T1

qv � xc. Therefore, the number of generators
d(M) � d(N1) + rk(Q1), where Q1 = N/N1 = ∏

v∈T1
Pv . By Corollary 7.10, d(N1) is bounded

by O(logx), and by Claim 7.5, rk(Q1) is bounded by O(logx). Hence, d(M) = O(logx). More-
over, using again Claim 7.5 we deduce that every subgroup M of Λ̂/C of index at most x can be
generated by at most c′ logx elements. We can now apply Lemma 1.3.1(i) from [24, p. 15]: As C

acts trivially on the group Λ̂, derivations are just homomorphisms and it follows that the number
of subgroups of Λ̂ whose projection in Λ̂/C is M is bounded by |C|d(M) � (logx)c

′ logx . This
finishes the proof of Theorem 1. �
8. Growth of lattices in semisimple Lie groups

In this final section we are going to discuss how to extend the results of the paper to semisim-
ple Lie groups. Given such a group H it is natural to consider only irreducible lattices in H ,
so from now on LH (x) denotes the number of conjugacy classes of irreducible lattices in H of
covolume at most x. We recall (see Section 4.1) that H contains irreducible lattices only if it
is isotypic, and that we can assume that H = (

∏a
j=1 Gj (R) × Ga+1(C)b)o for some absolutely

simple R-groups Gj , j = 1, . . . , a + 1.
To obtain an analogue of the lower bound of Theorem 1 which was proved in Section 6 for

a simple group H , we need to modify the choice of the fields of definition (ki): now the fields
have to be chosen so that

r1(ki) � a, r2(ki) = b and D1/di

ki
� c0.

This can be always achieved using Corollary 3.5.
For each of the fields k = ki we have to define an extension l as in Section 6. Let G be

an admissible group (in the sense of Section 4.1) defined over k, and suppose that G is inner
over kvj

for some t1 real places vj of k and is outer over the remaining t2 = r1(k) − t1 real
places. We note that either t1 or t2 depends only on the Lie group H (the former is the case when
the compact real form of the simply connected covers of the simple factors of H is outer, and
the latter, if it is inner). If t2 = 0 (i.e. G is an inner form over k), we let l = k. Otherwise, l is
defined as a quadratic extension of k such that precisely t1 real places of k split in l. Similarly
to Section 6, we can always achieve that Dl/k � c′d

0 : If k is a totally real field, we can take l =
k[√−(1 − θ1) . . . (1 − θt1)] or l = k[√(1 − θ1) . . . (1 − θt2)] depending on the above mentioned
two cases, where θ1, . . . , θt are Pisot numbers in k provided by Lemma 3.4(b). If k has complex
places and t2 	= 0, we can first consider its maximal totally real subfield k′, using Pisot numbers
define its quadratic extension l′ which splits t1 infinite places of k′ (which correspond to real
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places of k in the extension k/k′) and has Dl′/k′ � c
′d(k′)
1 , and then define l as a compositum of k

and l′.
With such fields k and l at hand we can repeat the rest of the argument in Section 6 and thus

show that the lower bound in Theorem 1 is valid for any semisimple group H which contains
irreducible lattices (i.e. for any isotypic semisimple Lie group).

The proof of the upper bound in Section 7 does not use the assumption that the Lie group is
simple and can be applied without any changes to semisimple groups H assuming validity of the
congruence subgroup property and Margulis–Platonov conjecture.

Thus we obtain the following generalization of Theorem 1 to semisimple Lie groups.

Theorem 8.1. Let H be an isotypic semisimple Lie group of real rank at least 2. Then:

(i) There exists a positive constant a such that LH (x) � xa logx for all sufficiently large x.
(ii) Assuming the CSP and MP, there exists a positive constant b such that LH (x) � xb logx for

all sufficiently large x.
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